A space ship sitting on the surface of Saturn's moon Mimas experiences a gravitational pull from that moon of F_{0} Newtons.
The space ship then lifts off from the surface and enters a circular orbit around Mimas a distance $2 R$ above the surface (and thus $3 R$ from the center of Mimas), where R is the radius of Mimas. What is the gravitational pull of Mimas acting on the space ship when it is in orbit?

1. $F_{0} / 2$
2. $F_{0} / 3$
3. $F_{0} / 4$
4. $F_{0} / 9$

Newton's Universal Law of Gravitation

In general:

$$
F=G \frac{M_{1} M_{2}}{d^{2}}
$$

On the surface of Mimas, $d=R$:

$$
F_{0}=G \frac{M_{1} M_{2}}{R^{2}}
$$

In orbit around Mimas, $d=R+2 R=3 R$:

$$
\begin{aligned}
F_{\text {orbit }} & =G \frac{M_{1} M_{2}}{(3 R)^{2}} \\
& =G \frac{M_{1} M_{2}}{9 R^{2}} \\
& =\frac{1}{9} G \frac{M_{1} M_{2}}{R^{2}} \\
& =\frac{1}{9} F_{0}
\end{aligned}
$$

